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A linearly independent fundamental system of solutions of the ordinary differential equations of the deformation of layered 
orthotropie conical shells is constructed for computer calculations. The fundamental system of solutions obtained enables boundary- 
value problems for shcUs with arbitrary parameters to be solved analytically. © 1996 Elsevier Science Ltd. All rights reserved. 

Many fundamental systems of solutions for thin-walled structures obtained analytically and analytic 
algorithms for soMng boundary-value problems have ceased to be used since they turn out to be 
practically linearly dependent for computer calculations, and the calculation becomes unstable. The 
reason for the instability of the calculations in this case is the fact that there are rapidly varying functions 
among the integrals of the differential equations considered. If there are one or several rapidly varying 
functions in each solution or any part of the fundamental system of solutions they will predominate for 
large values of the; argument, and such a fundamental system of solutions becomes practically linearly 
dependent, while the matrix of the system of linear algebraic equations for determining the arbitrary 
constants from the boundary conditions is ill conditioned. 

Since there are different fundamental systems of solutions for one system of ordinary differential 
equations, the problem arises of constructing that fundamental system of solutions which remains linearly 
independent during calculations for arbitrary parameters of thin-walled elements. This problem is solved 
below for a conical shell. 

For isotropic conical shells with non-axisymmetric loading, solutions were constructed in [1] in terms 
of special functions for ordinary differential equations, obtained after separation of the variables of 
Fourier's method,';. For the zeroth harmonic of the expansion, i.e. for axisymmetric deformation, and 
for the first harmonic, that is, for antisymmetric deformation, for shells of constant thickness the solutions 
were expressed in [1] in terms of well-known Thomson functions of the first and second kind, which 
are convenient to use by virtue of two facts. First, for any parameters of the conical shell, to calculate 
the Thomson functions two methods in all are sufficient: for small values of the independent variable 
one can use power series or an expansion in orthogonal polynomials, while for large values of the variable 
one can use asymptotic expansions in the neighbourhood of a point at Lrffinity. As a rule, the region in 
which these methods can be used is limited, but in this case, by combining them, one can obtain sufficient 
accuracy for any values of the independent variable. Second, the fundamental system of solutions of 
ordinary differential equations constructed using Thomson functions is linearly independent in the 
neighbourhood of a point at infinity and can be functionally normalized, as proposed in [2]. Hence, to 
calculate the stres,;-strain state of an axisymmetrically and antisymmetrically deformed isotropic conical 
shell of constant thickness one only needs to normalize the solution [1], and it can then be used for 
practically any geometrical parameters of the shell. 

The solution of the problem for other harmonics, i.e. for cyclic deformation of a conical isotropic 
shell of constant thickness, was expressed in [1] in terms of generalized hyperbolic functions. The funda- 
mental system of solutions constructed in this way is only suitable for calculations in the neighbourhood 
of the vertex of the shell, i.e. for small values for the independent variable. For large values of the 
independent variable, which arise in practical problems, one cannot use this system of solutions because 
of the above-menllioned predominance of rapidly increasing solutions. 

We will consider the problem of choosing the fundamental system of solutions of the solving equation 
of the problem of cyclic deformation of a conical shell and we will apply the results obtained to the 
more general case of a laminated orthotropic shell. 
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After separating the variables in the equations of statics, we have a system of ordinary different 
equations [3]. Following [1], we apply a complex transformation to them and obtain a single fourth- 
order solving equation 

k2-1~4_z(~)2+3~)+2)}N(z)= 0 (1) 6 4 +28 3 +82[1-~2(l+Da)]-2~2Dt~8+Da k 2 
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where N(z) is the required function, z is the new variable, Cij and Dij are generalized stiffnesses of the 
laminated material, s is the length of the meridian measured from the vertex of the middle surface, T 
is the angle between the meridian and the axis of the middle surface and k is the number of the term 
of the Fourier series in the expansion in a circular coordinate. 

We will represent Eq. (1) in the form [4] 

(-1)~Z ( 8 - a j  + 1 ) -  ( 8 - b j )  N(z)=0 ,  
"= j=l  

x = 0 ,  p = 2 ,  q = 4 ,  a l = 0 ,  a 2 = - I  (3) 

The parameters bj (j = 1 , . . . ,  4) are the roots of the governing equation for (1). It was shown in [1] 
that the parameters bj are real quantities for an isotropic shell• In the case of a laminated orthotropic 
shell they will usually be complex quantities. 

Equation (3) has a regular singular point z = 0 and an irregular singular point z = ~,. Its integrals 
can be expressed in terms of the generalized hyper-geometric function pFq(~; pq I z) and the Meyer 
function G~'~(z I a., b~). These functions are written in abbreviated form:- for these parameters we will 
wnte, for example, bq instead of bl, b2 . . . .  , bq and similarly H~ = 1 F(aj + k) will be denoted by F(ap + 
k), etc. 

The solution derived in [1] uses the fundamental system of solutions in the neighbourhood of the 
point z = 0. In the case considered here the analogous system of functions is 

Nh (z) = exp(inbh )G~'.24 zexp(-in) b h , b  1 . . . . .  bn_ l ,bh+ I . . . . .  bq 

F(l+bh-aP)zbh F3 , z  , h = l  ..... 4 
= F ( l + b  h -bq)  2 l+b h bq 

(4) 

Here and henceforth the asterisk denotes that the term 1 + b h - bq has been omitted if h = q. 
In (2) we have under the radical sign the ratio of the flexural stiffness of the shell to the membrane 

stiffness, i.e. a quantity proportional to the square of the shell thickness h. Hence, the modulus of the 
variable z is proportional to the ratio s/h and can be extremely large. For such values of the variable, 
when analysing the behaviour of the special functions considered, it is best to use their asymptotic 
expansions in the neighbourhood of  a point at infinity. 

For the function 2F3(otp; pq I z) the expansion as I z I ---> ~ has the form [4] 

(aP[ l F(pq) {K2,3(z)+K23(zei2~)+l-,z3(zei~)} 2F3 Pq Z r'(CXp) "" " (s) 

-3re + 8 ~< argz ~< It - 8, 8 > 0. 
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As I z I --'> oo the function K 2. 3(z) tends exponentially to infinity, K2, 3(ze TM) tends exponentially to zero, 
and the change in L2, 3(zd2n) has an algebraic form. Consequently, K2, 3(z) will be the predominant 
function, i.e. for large values of the variable K2, 3(ze TM) and L2, 3(ze i2~) will be negligibly small compared 
with K2, 3(z). Further, it follows from the procedure [4] for determining the coefficients of asymptotic 
series K., .(z), that for all solutions from (4) the expressions zbhKp, .(Z) are one and the same quantity. 
We f i n a ~  obtain that, for large values of the variable, the solutl~ns (4) only differ from one another 
in practice by a oanstant factor and this fundamental system of solutions is linearly dependent with a 
very high degree of accuracy. 

The fundamental system of solutions constructed in the neighbourhood of the irregular singular point 
z = ** does not have this drawback. Following [4], we will set up this system of solutions. 

We introduce the following notation 

i f = q - p = 2 ;  e = l ;  v = q - p - x = 2  (6) 

We choose integers k and co such that 

largz + (v - 2~. + 1)r~l < (a/2 + 1)n 

largz + (v - 2~)/tl < (ff + e)x, ~ = to, to + 1 ..... to + ff - 1 

These conditions are satisfied by ~. = 1, to = 0 and by two values of ~/, namely, zero and one. Then 
the fundamental  system of solutions of Eq. (3) can be compiled from the following functions. 

1. The two functions 

corresponding to ~ = 0 and V = 1, i.e. 

The asymptotic: series [4] for these solutions, apart from a factor, are ~hK~ ~(z) and zbhK2 3(ze~2~), 
one of these functions tends to zero as respectively (bh is any of the parameters bi, . . . , b2) i.e. ' ~ ' 

I z I - ~  oo and the other tends to infinity. 
2. Since the parameters al and a2 differ from one another by an integer, only one of the two functions 

l a.., ..... , - l . . .  ..... a,) "e'qlzexp[irc(v-2~'+l)] bq , t = l  ..... p (8) 

can occur in the fundamental system of solutions, for example, corresponding to t = 2 

4,1( ix a2;al ] G2, 4 ze bq (9) 

Its asymptotic expansion in the neighbourhood of a point at infinity has the form 

a2;al]  1 ]  G4a( eml za2-1F(l+bq-a2)  ( l + b q - a 2  
2.4~z [ bq F ( l + % _ a 2  ) 4FI~ l + a o _ a  2 (10) 

There is a fairly lengthy procedure, described in [4], for determining the other function. As a result 
we obtain a solution which has a logarithmic singularity at infinity. However, it is more convenient to 
obtain the necessary solution by considering the asymptotic expansion (5). The function Lr, s(z) in this 
formula is defined as follows? 
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Lrs(Z)_~,  Za'-lF((xt)F(Ctr-(Xt) * (0~t, l+ (x t -P ,  [ s-r 1 
' t=' r ( p s - " , )  s+iFr_l~ l+'°tt-(x~ ., (-1__~_ (11) 

If we use expansion (5) to calculate the functions (4), it can be seen that the asymptotic series for 
the three constructed solutions (7) and (9) occur in the expression obtained with certain coefficients. 
In (5) there is also a fourth term corresponding to t = 1 in (11). It must be calculated by taking the 
limit [4], since al and a2 differ from one another by an integer. As a result a logarithmic solution is 
obtained. 

From these considerations we choose as the fourth solution the required fundamental system of 
solutions 

Nt(z) - N2(z) (12) 

or the difference between any of the other functions from (4). As can be seen from (4) and (5), the 
asymptotic expansion for (12) contains no predominant function K2, 3(z) and is practically a linear 
combination of (10) and (11), since the quantity K2, 3(ze TM) is negligibly small compared with L2, 3(zin). 
Since slowly varying functions occur in (10) and (11), no essential difficulties arise in using (12) in the 
calculations. 

Thus, (7), (9) and (12) are convenient for calculating the fundamental system of solutions of Eq. (3). 
It can be shown that this system of functions is linearly independent. Its functional normalization is 
similar to that proposed in [2]: one must take as the normalizing factor for functions of increasing 
modulus their values on the right-hand end of the shell, and their values on the left-hand end for functions 
of decreasing modulus. Then, when determining the arbitrary constants the matrix of the system of linear 
algebraic equations will be will conditioned for as long a length of the conical shell as desired. 

Naturally, the solution obtained turns out to be more effective than sweep methods, since they lead 
neither to an increase in the order of the system considered nor to splitting of the shell into individual 
parts, nor to the use of additional computing procedures involving continuous or discrete orthogonaliza- 
tion of the solutions [5, 6]. 

As an example for the practical application of this method consider an isotropic conical shell closed 
in an end of the larger radius (R2/h = 1500). At the free end (Rflh = 1000) a load is applied which is 
distributed over an arc of 2 ° in the direction towards the shell axis. The length of the shell Xmax/h = 
1000 (x is the distance along the shell axis measured from the left end and h is the shell thickness). 
Figure 1 shows a graph of the change in the moments M1 and M2 along the generatrix in the region of 
application of the load. The results are represented in dimensionless form (in fractions of the product 
of the load intensity'and the shell thickness). This example demonstrates the stability of the calculations 
and the fact that the use of an analytic method of solving boundary-value problems is promising. 
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